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Abstract 
This review covers the basic principles of chemistry used in molecular modeling as they apply to medicinal chemistry. This is necessitated from 

the fact that the use of computers in drug design and development has become a common practice. 

 

1 Introduction 
Traditional drug discovery generally involves some 

trial and error processes that include experimental 

screening of new chemical entities which are obtained 

by chemical synthesis or isolated from natural origin, 

until the desired pharmacological properties have been 

developed [1]. This traditional approach cost at least 1 

billion US dollar and a period of at least 10 to 15 years 

to discover a successful drug [2]. Experts in the field 

of drug discovery and development have made several 

efforts to surmount the earlier mentioned challenges 

by coming up with the following methods: 

combinatorial chemistry methods, high throughput 

screening method, Proteomic and genomic projects, 

etc. Combinatorial chemistry has increased the 

number of compounds synthesized per given time, 

thereby populating the number of potential drug 

candidates to be screened. High throughput screening 

technique provided the opportunity to determine the 

biological potency of large chemical entities 

simultaneously. Advances in human genome and 

proteome have resulted in identification of large 

number of human proteins which serve as drug targets. 

All the contributions made by these techniques mainly 

caused an increase in expenses, number of leads and 

protein targets without corresponding increase in the 

number of successful new drug. Therefore, there is an 

urgent need for methods that will cut down cost and 

time for the drug discovery process. The use of 

computers and computer programs has emerged as an 

answer to this need in drug discovery, and is now 

known as computer aided drug design (CADD) [3]. 

In CADD, computational methods, mainly computer 

programs/algorithm, are employed to calculate 

structures and properties of molecules. These 

computational methods are broadly divided into two 

categories: molecular mechanics and quantum 

mechanics. 

 

2 Computers in Medicinal Chemistry 

2.1 Quantum Mechanics and Molecular Mechanics 

Before molecular mechanics and quantum mechanics 

calculations and operations are carried out on 

molecules, chemical structure of the molecule in 

question has to be generated and displayed on the 

computer screen. Molecular modeling programs often 

include chemical drawing and graphics display 

packages capable of generating both two and three 

dimensional chemical structures. The chemical 

structures can be displayed in different formats as 

shown in Fig 1. There are several software packages 

available, such as ChemDraw, Alchemy, Sybyl, 
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Hyperchem, Discovery Studio Pro, Spartan, CAChe, 

etc. [4]. 
 

 

 
Fig 1. Different representations for visualizing a molecule (histamine) a: 2D structure, b: line, c: stick, d: ball and line, 

e: ball and stick, f: space filling. b-f are 3D structures

2.2 Quantum Mechanics 

Quantum mechanics uses the principles of quantum 

physics to calculate/describe the properties of a 

molecule by considering the interactions between the 

electrons and nuclei of the molecule. Electrons of a 

drug molecule are considered as the most important 

atomic particle in QM because the chemical behavior 

of a molecule (drug molecule phenomena) is governed 

by the probability of finding an electron in a particular 

location in the molecule and by the energy of that 

electron [5-6].  

QM is based on molecular orbital theory (MOT) which 

enables the calculations/descriptions of electron 

location probabilities and energies following 

Schrodinger equation (1) on the potential energy 

surface. 

 

𝐻𝜓 = 𝐸𝜓        − − − − (1) 
 
Where H is the Hamiltonian operator for the system, E 

is energy (including the potential and kinetic energy 

components), ψ is the wave function which describes 

the distribution (3D coordinates) of an electron in a 

molecular orbital. 

Solution to Schrodinger’s equation is only obtainable 

for the simplest molecule – hydrogen. Simplifications 

resulting in the following assumptions have to be 

made to the equation in order to make it tractable in 

the case of large molecules: 

 Nuclei are regarded as motionless while 

electrons move around it. This assumption 

enables computation of electronic and 

nuclear energy to be made separately. 

 The electrons move independent of each 

other, so the influence of other electrons and 

nuclei is taken as an average. 

QM is used to calculate: molecular orbital energies 

and coefficient, heat of formation for specific 

conformations, partial atomic charges calculated from 

molecular orbital coefficients, electrostatic potentials. 

QM calculations are subdivided into three categories 

namely; ab initio, density functional theory and semi-

empirical methods. 

 

2.2.1 Ab Initio Methods 

Ab initio is a Latin phrase meaning ‘from the 

beginning’. In this method, variation theory is used to 

compute energy of a molecule based on wave function. 

Full Schrodinger’s equation is used to treat all the 

electrons of a molecule without attempt to calibrate 

them against experimental data. Hartree-Fock model 

is an example of ab initio calculations.  
Hartree and Fock combined electrons into an average 

field which simplified calculation by allowing 

Hamiltonian to be calculated for each electron 

independently using a new term for its interaction with 

the overall electron cloud.  

Ab initio method implies the following: 

 All the electrons have been considered 

simultaneously. 

 The exact non-relativistic Hamiltonian (with 

fixed nuclei) is used. 

𝐻 =  −
1

2
∑ 𝛻𝑖

2 − ∑
𝑍𝑎

𝑟𝑖𝑎

+ ∑
1

𝑟𝑖𝑗

+ ∑
𝑍𝑎𝑍𝑏

𝑟𝑎𝑏
𝑎,𝑏𝑖>𝑗𝑖,𝑎𝑖

 − − − − (2) 
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Where the indices i, j and a, b refer, respectively, to 

the electrons and to the nuclei with nuclear charges Za 

and Zb. H is an “operator”, a mathematical 

construction that operates on the molecular orbital, ψ, 

to determine the energy. 

 Lastly, an effort would have been made to 

evaluate all integrals rigorously. 

Generally, ab initio method is satisfactory only for 

small molecules containing about tens of atoms. 

However, it has been applied to more computational 

work due to high computer horsepower. The method 

is used to determine properties of atoms of a molecule 

such as dipole moments, magnetic susceptibility, 

chemical shielding, spin-spin coupling constants, 

electron affinity, etc. GAMESS and GAMESS-UK are 

widely free academic software for carrying out ab 

initio calculations. 

 

2.2.2 Density Functional Theory 

Density Functional Theory (DFT) is QM method that 

calculates energy (electronic structure) of atoms of a 

molecule (especially the ground state) based on the 

electron density. Although DFT has been used to 

perform calculations in solid-state physics since the 

1970s, it was only considered accurate enough for 

computations in quantum chemistry in the 1990s when 

the approximations in DFT were greatly refined to 

better model the exchange and correlation interactions. 

This placed DFT as a leading method used in 

describing electronic structure. However, the theory 

has not satisfactorily described intermolecular 

interactions like van dar Waals forces (dispersion), 

charge transfer excitations, global potential energy etc. 

DFT method has been applied in different aspect of 

drug design processes such as: calculation of anion-

binding properties of 2,6-diamidopyridin 

dipyrromethane hybrid macrocycles, analyzing the β2-

adrenergic G protein-coupled receptor and predicting 

drug resistance of HIV-1 reverse transcriptase to 

nevirapine through mutations. 

 

2.2.3 Semi Empirical Method 

Semi empirical calculations were born out of necessity 

to solve the limitation of ab initio method i.e. 

computer intensity. Principally, semi empirical 

method is a simple Hartree Fock-Linear combination 

of atomic orbitals (HF-LCAO) based model that avoid 

all the difficult integrals, involved in ab initio method 

that makes it computationally intensive, which is 

usually calibrated against experiment. Semi empirical 

calculations are faster than ab initio method and uses 

perturbation theory to compute electronic properties 

such as electronic distribution and partial charges. 

This method is suitable for molecular systems 

containing hundreds of atoms. Molecular Orbital 

PACkage (MOPAC) and AM1 (Austin Model 1) are 

popular programs used in QM semi empirical 

calculations. 

 

2.2.4 Quantum Mechanics in Drug Design 

(Electronic Charge) 

Earlier, we have mentioned that MOT is the bedrock 

of QM methods.  Molecular orbital calculations give 

numeric indices that show the electronic structure 

(probable position of an electron in a molecular orbital 

and its energy) which in turn governs the biological 

behavior/activity of a drug molecule.  So, changes in 

numeric indices bring about change in electronic 

structure and invariably change in how a drug 

molecule behaves in vivo.  Two examples that show 

the usefulness of MO calculations results (numerical 

indices) in interpretation of a drug’s mechanism of 

action and design of new drug molecule with 

improved properties are in the calculation of electronic 

charges. 

The calculation of electronic charges reveals that 

electron charge density of atoms in a molecule is not 

evenly distributed. Valence electrons of atoms of a 

molecule are not localized on a particular atom rather 

they move around the entire molecule but spend more 

time nearer to electronegative atoms than 

electropositive ones. This results in some parts of the 

molecule being partially negative (due to excess 

electron) and other parts being partially positive (due 

to electron deficiency). Calculated electronic charges 

of molecules have been found useful in predicting 

structure-activity relationship of drugs as shown in the 

following. 

Consider the three inhalation anesthetic gases shown 

in Fig 2 alongside their calculated excess or deficient 

electronic charges per atom of the molecule (not the 

absolute values). The electronic charge values enable 

drug scientist to suggest/propose the metabolism of 

these gases as thus: enzymatic ether bond cleavage by 

attack of an electrophilic oxygen atom at the methyl 

carbon in methoxyflurane is really much feasible than 

other two molecules because the methyl carbon is 

much less positive than the methyl carbons in others. 

The results of predictions like these are a better 

understanding of metabolism and a rationale for the 

design of new agents with improved properties. 

Second example is gotten from the charge distribution 

of histamine and histamine ion (Fig 3) [7-8]. Charges 

are thought to be localized on a particular atom as the 

terminal nitrogen atom of histamine ion bears the 

positive charge. However, calculation of partial 

charges shows that some of the positive charge is 

localized on the hydrogen attached to the terminal 
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nitrogen.  This has important consequences in the way 

we think of ionic interactions between a drug and its 

binding site. It implies that charges areas in the binding 

site and the drug are more diffuse than one might 

think. This in turn, suggests that we have wider scope 

in designing novel drugs. 
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Fig 2. Charge densities for anesthetic gases: methoxyflurane (I), enflurane (II), isoflurane (III) 

 

                  
Fig 3. Charge distribution on the histamine (I) and histamine ion (II) 

 
2.3 Molecular Mechanics (MM) 

In molecular mechanics, molecules are considered as 

a series of spheres (the atoms) connected by springs 

(the bonds). A large molecule consists of the same 

features we know about in small molecules, but 

combined in different ways. Equations, used in MM 

follow the laws of classical physics and are applied to 

nuclei without consideration of the electrons. The 

internal energies in MM are simply based on the 

Newtonian laws of classical mechanics. Equations 

derived from classical mechanics, are used to calculate 

the different interactions and energies (force fields) 

resulting from bond stretching, angle bending, non-

bonded interactions, and torsional energies [9-10]. 

 

Etot = Estr + Ebend + Etor + Evdw + Eelec + …   - - - - (3) 

 

Where Etot is the total energy of the molecule, Estr is 

the bond-stretching energy term, Ebend is the angle-

bending energy term, Etor is the torsional energy term, 

Evdw is the van dar Waal energy term, Eelec is the 

electrostatic energy term. 

Values of bond length, bond angle, bond stretch and 

so on, at equilibrium are also known as force 

constants. These are used in the potential energy 

functions defined in the force field which describes a 

set known as force field parameters. The total energy 

of a molecule increases at any deviation from these 
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equilibrium values. Each conformation of a molecule 

has its own total energy and a difference between the 

total energy of two different conformations of the 

same molecule is used to determine molecular 

stability. 

 

2.3.1 Bond-stretching 

If we consider histamine (Fig 4) we can identify a 

variety of bond types including C(sp2)-C(sp2), C(sp2)-

C(sp3), and so on [11]. 

 

N

HN

NH2  
Fig 4. 2D chemical structure of histamine 

 

There is usually an energy (interatomic force) change 

when the bonds stretch and contract from their ideal 

unstrained length. This bond-stretch energy term is 

described by the equation given below. 

 

𝐸𝑠𝑡𝑟 =  
1

2
𝐾𝑏 (𝑏 − 𝑏𝑜)2  −  −  −  −   (4) 

 

Where Kb is the bond-stretching force constant, 𝑏𝑜 is 

the unstrained bond length, and 𝑏 is the actual bond 

length. 

 

2.3.2 Bond-bending/angle 

Next, we have to consider the angle-bending 

vibrations. It is usual to write these as 

harmonic ones, typically for the connected atoms A-

B-C [66]. 

 

𝐸𝑏𝑒𝑛𝑑 =  
1

2
𝑘𝐴𝐵𝐶 (𝜃𝐴𝐵𝐶 −  𝜃𝑒,𝐴𝐵𝐶)2  −  −  −  −    (5) 

 
𝑘𝐴𝐵𝐶 (K is the angle-bending force constant, 𝜃𝑒,𝐴𝐵𝐶θ is 

the equilibrium value for the bond angle 𝜃θ, and 

𝜃𝐴𝐵𝐶θis the actual value for 𝜃θ. 

 
2.3.3 Torsion angle 

Torsional energies are associated with atoms that are 

separated from each other by three bonds. The relative 

orientation of these atoms is defined by the dihedral or 

torsion angle. The torsional angle ABCD between the 

four bonded atoms A, B, C and D is shown in Fig 5 

[10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Dihedral angle 

 

If we use χ to denote the angle between the four atoms, 

then a popular dihedral potential energy term is a 

cosine series given by 

 

𝐸𝑡𝑜𝑟  =  
1

2
𝐾𝑗(1 − cos(𝑛(χ − χ𝑒)))  − −  −  −     (6) 

Where 𝐾𝑗 is the torsional barrier, χ is the actual 

torsional angle, 𝑛 the periodicity parameter, which 

would be 3 for a methyl group. χ𝑒is the equilibrium 

(reference) torsional angle.  

 

2.3.4 Non bonded interactions 

MM force fields have to be transferable from molecule 

to molecule, therefore, the necessity of non-bonded 

interactions. These are usually subdivided into two 

types; Lennard-Jones and Coulomb’s interactions [5, 

12-13]. 

 

2.3.5 Lennard-Jones interaction 

The Lennard-Jones potential as shown in Fig 6, 

describes the interactions of two neutral particles using 

a relatively simple mathematical model. Two neutral 

molecules feel both attractive and repulsive forces 

based on their relative proximity and polarizability. 

The sum of these forces gives rise to the van dar Waal 

interactions usually represented as Lenard-Jones 

potential (V(R) or E), as seen below: 

 

𝑽(𝑹) = 𝟒𝜺 [(
𝝈

𝒓
)

𝟏𝟐

− (
𝝈

𝒓
)

𝟔

] =  𝜺 [(
𝑹𝒎𝒊𝒏

𝒓
)

𝟏𝟐

− 𝟐 (
𝑹𝒎𝒊𝒏

𝒓
)

𝟔

]  −  − −  −     (7) 

 

Where ε is the potential well depth, σ is the distance 

where the potential equals zero (also double the van-

der-Waals radius of the atom), and Rmin is the distance 

where the potential reaches a minimum, i.e. the 

equilibrium position of the two particles.  

The resulting curve from this equation looks very 

similar to the potential energy curve of a bond 

A 

B 

D 

C 
ABCD 
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Fig 6. The Lennard-Jones 6-12 potential (E) 

approximates the intermolecular interactions of two 

atoms due to Pauli repulsion and London dispersion 

attraction. The potential is defined in terms of the well-

depth (ɛ) and the intercept (σ). Other formulations use 

the radius where the minimum occurs, Rmin, instead of 

σ.  

 

2.3.6 Coulomb’s interaction 
Coulomb interactions or electrostatic forces are 

involved in attraction or repulsion of particles or 

objects because of their net electric charge [5]. 

Coulomb noticed that forces acted along the line 

joining the centers of two charged bodies 𝑄𝑎and 𝑄𝑏 , 

and that the forces were either attractive or repulsive 

depending on whether the charges were different or of 

the same type. The sign of the product of the charges 

therefore determines the direction of the forces. 

 

𝐸𝑒𝑙𝑒𝑐 = 𝐾 
𝑄𝑎𝑄𝑏

𝑟2
  −  −  − −     (8) 

 

Where Qa and 𝑄𝑏  are the atomic charges of the 

interacting atoms, 𝑟 is the distance between the 

charged bodies and 𝐾is a proportionality constant 

taken to be 1/(4πϵ0), where the permittivity of free 

space ϵ0 is an experimental determined quantity with 

the approximate value ϵ0 -8.854 x 10-12 C2N-1m-2. 

The non-bonded term comprising Eelec and Evdw are a 

function of the distance between atom pair rij (non-

bond cutoff distance). 

To summarize the concept of MM, it is worthy to note 

the following; 

 The energies calculated by MM are of no 

meaning as absolute quantity. They are only 

of relevance when compared to the energies 

of another conformation of the same 

molecule. 

 MM calculations make use of data or 

parameters stored in tables within the 

program and that describe interactions 

between different sets of atoms. 

 MM is used to calculate: energies of a 

molecule’s conformation, energy 

minimization and energies of a molecular 

trajectory/motion. 

 MM is fast and less intensive on computer 

time relative to quantum mechanics.  

 Lastly, because MM does not consider 

electrons, it cannot calculate electronic 

properties. 

2.3.7 Example of MM in Drug Design (Energy 

Minimization) 

Molecular mechanics calculations are applied in 

several aspects of drug design including energy 

minimization, docking, molecular dynamics, etc. 

Energy minimization will only be considered. 

Energy minimization (EM) is a process by which 

stable, low-energy conformations of a molecule are 

calculated using the MM program/approach. EM is 

often performed to avoid atomic clashes and locate 

most stable conformation of molecules (Fig 7) [5,14]. 

There is a possibility of unfavorable bonded and non-

bonded interactions existing in a newly generated 

chemical structure. MM program calculates the energy 

of the new molecule then varies the bond lengths, bond 

angles, and torsion angles (this changes the geometry 

of the structure) and calculates the energy of the later 

structure. Comparison of the two energies of the first 

and later structure will show if a slight alteration in 

bond length or bond angle has effect on the overall 

energy of the molecule.  The MM program will 

perform more geometrical changes and eventually 

stop at a structure in which geometrical variation result 

in only slight changes in energy – an energy minimum.
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Fig 7. Energy minimization profile. L represents points of local minima and G is the global minimum. 

 

2.4 Structure-Based Drug Design 

Structure-based drug design (SBDD), also known as 

receptor-based drug design, is used when receptor 

(mainly enzymes/proteins) and ligand (small-

molecule or drug) structures are both known [15]. The 

structure of the receptor can be determined by 

experimental methods such as X-ray crystallography 

or NMR. Alternatively, computational techniques 

such as threading or homology modeling can also be 

applied in obtaining structure of proteins whose 

structures are unavailable [16]. Then the binding site 

of the receptor is determined by either experimentally 

or computationally.  In most cases, the protein is co-

crystallized with a ligand. So the pocket where the co-

crystallized ligand is located is considered the binding 

site of the protein [17]. A well characterized protein 

binding site, such as the interaction between the amino 

acids at the binding site of the protein and the ligand, 

can give information vital in designing of novel 

ligands or docking of putative ligand molecules. 

The selective binding which occurs between small 

molecule ligand and a specific protein target is the 

basis of physiological activity and pharmacological 

actions of the ligand. Structural and energetic factors 

govern this binding event and are respectively 

captured in computational techniques by the 

prediction of binding mode/conformation (docking) 

and scoring of protein-ligand complexes. 

 

2.4.1 Predicting Binding Mode - Docking 
Docking is a computational technique used to predict, 

with a substantial degree of accuracy, the 

conformation (binding mode/pose) of ligands within 

the appropriate target-protein binding site [18]. It 

constitutes, therefore, a major technique employed in 

virtual screening by structure-based drug design [19]. 

Docking searches for different energetically permitted 

binding poses of a ligand at the protein active site by 

performing a number of trials. At the end of the trial 

searches, a pose is retained based on the calculated 

receptor-ligand interaction energy (score) of that pose. 

Conventionally, several poses of a molecule is 

generated by docking method and the score of each 

pose calculated using a scoring function usually 

affinity scoring function (Fig 8).  The dock-score of 

each pose of the molecule is only of importance to 

medicinal chemist in comparison to other, that is, 

when prioritized. Placing the score in decreasing order 

is termed ranking. The pose with the lowest theoretical 

binding affinity is considered the best [20]. 

 

2.4.2 Scoring and Scoring Function 
Almost all available scoring functions can be grouped 

into two categories: knowledge-based scoring 

functions and energy component methods [21]. In 

knowledge-based scoring function, statistical tools are 

used to compute the interatomic contact frequencies 

and/or distances in a database of crystal structures of 

protein-ligand complexes. Ligand binding affinity 

towards the target protein is assumed to be favored by 

molecular interactions that are close to the frequency 

maxima of the interactions in the database and vice 

versa. The observed frequency distributions are 

converted to what is called mean force or knowledge-

based potentials. PMF, DrugScore, SmoG and Bleep 

are examples of knowledge-based potentials that 

predict binding affinity [22-24].
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Fig 8. Outline of the molecular docking process. (A) Three-dimensional structure of the ligand; (B) Three-dimensional 

structure of the receptor; (C) The ligand is docked into the binding cavity of the receptor and the putative 

conformations are explored; (D) The most likely binding conformation and the corresponding intermolecular 

interactions are identified. The protein backbone is represented as a cartoon. The ligand (carbon in magenta) and active 

site residues (carbon in blue) are shown in stick representation. Water is shown as a white sphere and hydrogen bonds 

are indicated as dashed lines. 

They mainly differ in the type of molecular interaction 

that were considered and in the size of the training 

database used. 

Scoring functions based on the energy component 

methods assumes that the change in free energy upon 

binding of a ligand to its target can be decomposed into 

a sum of individual contributions: 

 
∆𝐺𝑏𝑖𝑛𝑑 =  ∆𝐺𝑖𝑛𝑡 +  ∆𝐺𝑠𝑜𝑙𝑣 +  ∆𝐺𝑐𝑜𝑛𝑓 +  ∆𝐺𝑚𝑜𝑡𝑖𝑜𝑛   −  − −  −      (9) 

 

Where ∆𝐺𝑖𝑛𝑡 is the specific ligand-receptor 

interactions, ∆𝐺𝑠𝑜𝑙𝑣 is the interactions of ligand and 

receptor with solvent, ∆𝐺𝑐𝑜𝑛𝑓 is the conformational 

changes in the ligand and receptor and ∆𝐺𝑚𝑜𝑡𝑖𝑜𝑛 is the 

protein and the ligand motion during the complex 

formation 

Several applications using these methods to predict 

binding affinity have been developed such as LUDI, 

ChemScore, Validate, GOLD score, PLP, FlexX 

score, ScreenScore, AutoDock3 and so on [24]. 

 

2.4.3 Effect of Water-Solvation Energy 

The biological system is made up of 70 % of water 

molecules. These water molecules play essential roles 

in the formation of protein-ligand complex in number 

of ways: They can mediate the contact between protein 

and a small molecule ligand by providing additional 

hydrogen bonds to the ligand. They can promote 

adaptability by allowing for promiscuous/ off-target 

ligand binding due to steric constraint. Consequently, 

the displacement of these water molecules by 

appropriate ligand functional moieties may be 

favourable to protein-ligand complex formation. 

Therefore, docking method which recognizes the 

explicit effects of structural water molecules and 

water-mediated interactions is highly desirable. 

Examples of such docking software are FlexX and 

SLIDE, etc [25]. 

Another method of drug design based on the 

knowledge of a biological target (structure-based drug 

design) is de novo method [26]. De novo design 

techniques are used when receptor structure is known 

and ligand structures are unknown. In this method, 

novel pharmaceutical active agents capable of 

interacting with a given receptor are computationally 

generated based entirely on the knowledge of the 

protein binding site. The proposed de novo model can 

be used to search large databases to identify compound 
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fragments that can interact with specific sites in the 

receptor. GROW and LEGEND are examples of 

programs used in these techniques. 

 

2.5 Molecular Dynamics 

Target proteins are generally kept static while ligands 

are allowed to move about in docking. This is known 

as fixed-target-flexible-ligand docking and it is the 

type characterized in almost all virtual screening [27]. 

However, we know that biomolecules are dynamic in 

nature; therefore, docking is insufficient tool in 

computational predictions [28]. Structural dynamism 

of targets is accounted for through generations of 

multiple conformations of target by molecular 

dynamic techniques, Monte Carlo sampling, simulated 

annealing and even NMR [29].  

In reality, atoms of molecules are never stable. 

Therefore, it is paramount to account for structural 

dynamism in attempt to describe biochemical systems. 

Dynamism of atoms of molecules in biological 

processes is recognized/computated by performing 

conformational sampling [30]. In molecular dynamic 

calculation, Newton second-order equation of motion 

(10) is solved for atom i with mass mi typically within 

a system of interacting forces and subjected to a net 

force Fi.  

𝑭𝑖 = 𝑚𝑖�̈�𝑖    −  −  −  −  (10)     
 

�̈� is the second derivative of the positional vector 

calculated with respect to time. MD simulation is a 

deterministic method. Exact solutions for state 

properties can be derived from MD simulation at a 

given time and after specifying the initial set of system 

conditions. Once the starting atomic positions have 

been specified (typically obtained from x-ray 

crystallography and NMR spectroscopy), velocities 

are assigned according to a Maxwellian distribution as 

given in equation 11. 

 

𝑃(𝑣) = √
𝑚

2𝜋𝑘𝑇
𝑒(−

𝑚𝑣2

2𝑘𝑇
)   −  − − −    (11) 

 

Where P(v) is the probability, m and v are respectively 

the atomic mass and velocity, while k is the Boltzmann 

constant. According to the equipartition theorem, the 

system temperature T is related to the velocities (12) 

and (13), 

 

𝐸𝑘𝑖𝑛 =
1

2
𝑚𝑣2   −  −  − −     (12) 

 

𝑇 = (
1

𝑘3𝑁
) ∑ ∑ 𝑚𝑖𝑣𝑖,𝑎

2

𝑎=𝑥,𝑦,𝑧

  −  −  −  −     (13)

𝑁

𝑖=1

 

 

with the system kinetic energy, represented by Ekin and 

a representing the xyz coordinates. In principle, by 

correctly assigning the temperature T, according to the 

Maxwellian distribution the system under study 

becomes capable of dynamically evolving in a fashion 

similar to real life systems undergoing thermal motion 

[31].  

Nowadays, one of the many applications of MD 

simulation technique in drug design and development 

is in investigating both structural and temporal 

stability of drug-receptor complexes under modeled 

experimental conditions such as solvent system, ionic 

concentration, temperature, and pressure. This 

becomes increasingly important in investigating 

stability of ligand-receptor complex as predicted by 

docking because the mere occurrence of binding may 

not always indicate the survival of such interaction on 

a time scale that is sufficient for altering physiological 

responses [32].The predicted drug-receptor complex 

from docking calculation is considered stable if MD-

generated drug conformations do not deviate by more 

than a given root mean standard deviation (rmsd), 

usually 2-3 Å. Additionally, MD has been applied to 

sample potential conformational states for a molecular 

target that has no suitable available crystallographic 

structures (structures with inaccessible or poorly 

defined binding sites). These samples conformations 

of the target (with accessible and well defined binding 

site cavities) can then be selected for molecular 

docking. Lastly, when a drug binds to a receptor, 

complex structure (drug-receptor complex) is formed 

which is more stable and causes equilibrium to shift 

towards the minimum energy complex structure. MD 

technique can be used to alternatively produce 

conformational states corresponding to these ligand-

induced structures. 

 

2.6 Ligand-Based Drug Design 

When a receptor for a disease is unknown or the 3D 

structure is unavailable but a single active molecule is 

known then similarity searching is carried out in what 

is known as ligand-based virtual screening. In a 

situation where several actives are available then it 

may be possible to identify a common 3D 

pharmacophore, followed by a 3D database search 

[33]. If a reasonable number of active and inactive 

structures are known they can be used to train a 

machine learning technique such as a neural network 

which can then be used for virtual screening. 

 

2.7 Pharmacophoric Screening   
Ehrlich first defined pharmacophore as “a molecular 

framework that carries the essential features 

responsible for a drug’s biological activity” [34]. In 

pharmacophore-based screening, a typical of ligand-
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based drug design, a pharmacophore model is built 

which consist of how the positions of key amino acids 

will be in the active site of a target protein, feature type 

and direction of an active ligand. For instance, a key 

amino acid that acts as hydrogen bond donor should be 

in the location of a hydrogen bond acceptor feature in 

the pharmacophore model. A pharmacophore 

modeling cuts across ligand-based and structure-

based. If the model is developed based on the 

knowledge of the ligand i.e. where several different 

known active molecules are used to identify the 

common important features, or from the target protein 

structure. However, pharmacophore model is 

categorized as structure-based when it is built based on 

the knowledge of the protein target structure [35]. 

 

2.8 SAR, QSAR and 3D-QSAR 

Structure-Activity Relationship (SAR) approach 

attempts to explain the biological activity of a drug 

molecule as dependent on its molecular structure. 

Whereas Quantitative Structure-Activity Relationship 

(QSAR) moves further to examine the actual structure, 

characterize and quantify their physicochemical 

properties in numeric indices as parallel to their 

biological activity [36]. Crum-Brown and Fraser [37] 

were the first to publish equation in the field of QSAR, 

which set forth the idea that the biological activity of 

a compound Φ is a function of its structural properties 

C. 

Φ = f (C) -  -  -  -   (14) 

 

To account for the effect of 3D molecular shape to 

biological activity, 3D-QSAR was developed and 

added to QSAR models [38]. All of these efforts by 

SAR, QSAR and 3D-QSAR enable scientists involved 

in drug research to suggest mechanism of drug action 

and make predictions of more profitable areas for drug 

synthesis. This means that QSAR models allow the 

calculation of biological properties of novel analogues 

in advance, so that only the ones with improved 

potency get to be synthesized. Also, if an analogue is 

found which defies the model, it suggests that some 

other factors are important and that provides a lead for 

further studies [39]. 

Several physicochemical parameters can be calculated 

in developing a QSAR model. However, the most 

common parameters used are hydrophobic, electronic 

and steric properties [40].  Due to the complexity that 

could emerge in calculating all these properties 

simultaneously and relating them to biological 

activity, each of the properties is varied one at a time 

while the rest is kept constant.  In a simple case, 

several compounds with varying physicochemical 

properties (e.g. log P) are prepared and tested to 

investigate how these affect the biological activity (log 

1/C). A graph of log 1/C vs log P is plotted and with 

the help of statistical tool (usually linear regression 

analysis by least square method), QSAR 

equations/models are developed. The regression or 

correlation coefficient (r) is a measure of how well the 

physicochemical parameter present in the equation 

explains the observed variance in biological activity. r 

values ≥ 0.9 are considered good fit while for 

regression coefficient quoted as r2, r2 ≥ 0.8 is taken as 

a good fit. Other statistical measures calculated to 

ensure goodness of fit include standard deviation, F-

tests, etc. 

 

2.8.1 Hydrophobicity 

Drugs have to cross lipid-soluble regions such as cell 

membranes and fatty tissues, compete with 

metabolism process, which are fast for lipophilic drugs 

and with excretion process which are fast for water-

soluble drugs before getting to their receptor [41]. 

Therefore, hydrophobic/lipophobic character of drugs 

play vital role to their biological effects, hence, it is 

necessary to predict this quantitatively. Hydrophobic 

property of a drug is determined experimentally by 

testing the drug’s relative distribution in an n-

octanol/water mixture vis-à-vis its biological activity. 

 

𝑃 =  
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑎𝑞𝑒𝑜𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
        −  −  −  −      (15)  

 

Where P is the relative distribution also known as 

partition coefficient 

The biological activity is generally expressed as 1/C, 

where C is the concentration of drug required to 

achieve a defined level of biological activity. The 

reciprocal of the concentration (1/C) is used because 

more active drugs will achieve a defined biological 

activity at lower concentration. 

A plot of log (1/C) vs log P gives a straight line (Fig 

9a) for cases with small range of log P, i.e. log P = 1-

4, give equation 16: 

 

log (
1

𝐶
) =  −𝑘1𝑙𝑜𝑔𝑃 + 𝑘2     − − − −       (16) 

 

Where 𝑘1 𝑎𝑛𝑑 𝑘2 are proportionality constants. 
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Fig 9. Typical model relating biological to log P in small range (a) and large range (b) 

 

Parabolic curve is obtained when biological activity is 

plotted against log P when P is large (Fig 9b) [42]. If 

the partition coefficient is the only factor influencing 

biological activity, the parabolic curve can be 

expressed by the equation (17): 

 

log (
1

𝐶
) =  −𝑘1(log 𝑃)2 + 𝑘2𝑙𝑜𝑔𝑃 + 𝑘3          −  − − −       (17) 

 

Take for example QSAR equation derived when a set 

of large nonspecific, nonionic substances comprising 

of alcohols, ethers, and amides were tested for a 

narcotic effect on tadpoles. 

 

log (
1

𝐶
) = 0.94 log 𝑃 + 0.87  (𝑟 = 0.97, 𝑛 = 51)   −  −  −  −          (18) 

 

The equation shows that fat solubility determines the 

accumulation of molecules in the nerve tissues of the 

tadpole which in turn influences their anesthetic 

potency.  The r value indicates that the line resulting 

from the equation is a good fit. All the substances 

examined have their log P values on the upward slope 

of the parabolic curve. It would seem as though 

continuous increase in the log P will bring about an 

unending increase in biological effect. This is not so 

rather an optimum value of log P given in Fig 9b as 

log P0 is observed. In fact, any further increase in log 

P after log P0 results in declining biological effect.  

Consider the anesthetic action of ethers whose 

mechanism of action do not involve drug-receptor 

interaction but solely on their ability to cross lipid 

membranes (cell membranes). The QSAR 

model/equation (19) for the ethers was generated as 

given below: 

 

log (
1

𝐶
) =  −0.22(𝑙𝑜𝑔𝑃)2 + 1.04𝑙𝑜𝑔𝑃 + 2.16      −  − −  −      (19) 

 

This equation can then be used to predict the anesthetic 

property of novel compounds. None the less, it should 

be noted that each QSAR model only applies to a 

series of compounds which have the same general 

structure.  In the example, the model is derived solely 

for anesthetic ethers and therefore not applicable to 

other structural type of anesthetics.  

The current progress in this area now makes it possible 

to calculate log P by computing the contributions that 

various substituents make to hydrophobicity. This 

helps to save resources and time because only 

substituents which make positive contribution to log P 

is synthesized. 

 

2.8.2 Electronic Effect 

The ionization and polarity of a drug molecule are 

influenced by the electronic state (electron 

withdrawing and donating property) of its various 

substituents. This in turn could affect drug’s transport 

to the receptor neighborhood and the drug-receptor 

interaction. For aromatic rings, the measure of 

electronic withdrawing and donating ability of a 

substituent is given by σ, known as Hammett 

substituent constant. The σx for a particular substituent 

(x) is defined by the equation: 
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σ𝑥 = log
𝐾𝑥

𝐾𝐻

= 𝑙𝑜𝑔𝐾𝑥 − 𝑙𝑜𝑔𝐾𝐻     −  −  − −     (20) 

 

Where 𝐾𝐻is the equilibrium or dissociation constant; 

subscript H signifies that there are no substituents on 

the aromatic ring. 𝐾𝑥  is dissociation constant of the 

analogue bearing the x substituent. Note that 𝐾𝑥 can 

either be smaller than 𝐾𝐻which happens when the 

substituent is electron donating group and vice versa. 

This leaves σ𝑥 either as negative or positive values 

respectively.  

Due to the fact that σ𝑥 takes resonance and inductive 

effects into account, its values depends on the position 

of the substituent on the parent aromatic compound. 

σ𝑝  𝑎𝑛𝑑 σ𝑚 symbolize substituents at para and meta 

positions respectively. For example; the electron 

withdrawing power of nitro group in meta-

nitrobenzene is due to inductive effect only (σ𝑚 =
0.71). But in para-nitrobenzene, both inductive and 

resonance influence participate (σ𝑝 = 0.78). The 

same account for the discrepancies in Hammett 

substituent constant observed for hydroxyl group at 

meta (σ𝑚 = 0.12) and p (σ𝑝 =  −0.37) positions. The 

inability of σ𝑥 to measure for ortho substituents places 

a limitation to the electronic constants described so far, 

hence, substituents have an important steric and 

electronic effects. Secondly, only very few drugs are 

entirely influenced by electronic effect (Fig 10).  
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meta nitro group - electronic influence on R is inductive

para Nitro group - electronic influence on R is due to inductive and resonance effect  

Fig 10. Substituent effects of a nitro group at the meta and para position 

2.8.3 Steric Factors 

Many methods have been used to describe the 

influence of bulk, size and shape of a drug and these 

properties affect how it interacts with a binding site. 

Examples of such methods include: Taft’s steric factor 

(Es), molar refractivity and verloop steric parameter 

[43-44]. 

Taft’s steric factor (Es) value is calculated using the 

equation (21): 

 

𝐸𝑠 = log 𝑘𝑥 − log 𝑘𝑜          −  − − −            (21) 

 

Where kx and ko are the rate of hydrolysis of an 

aliphatic ester bearing the substituent x and the 

reference ester. 

Taft’s steric factor only applies or is used to calculate 

the steric feature of the substituents which interact 

sterically with the tetrahedral transition state of the 

reaction and not by resonance or internal hydrogen 

bonding. 

2.8.4 Hansch Equation 

In reality, it is an uphill task to keep other parameters 

constant while calculating one physicochemical 

parameter as it is implied in the above equations. 

Therefore, there is need to develop method that can 

combine a number of different parameters and relate 

them to biological activity. The equation that does so 

is known as Hansch equation (22) [39]: 

 
log 1/𝐶 =  𝑘1𝑙𝑜𝑔𝑃 + 𝑘2𝜎 + 𝑘3𝐸𝑠 + 𝑘4    − − − −               (22) 

 

This Hansch equation (linear) only applies when 

hydrophobicity value is in small range. For log P 

spread across a large range, the equation becomes 

parabolic as shown in equation (23): 

 

log
1

𝐶
=  −𝑘1(𝑙𝑜𝑔𝑃)2 +  𝑘2𝑙𝑜𝑔𝑃 +  𝑘3𝜎 +  𝑘4𝐸𝑠 +  𝑘5      −  −  −  −      (23) 
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It has become necessary to consider the relative 

properties of different substituents by plotting a graph 

one physicochemical property against the other such 

as Craig plot in which the hydrophobicity substituent 

constant (π) is plotted against Hammett substituent 

constant (σ). Craig plot shows the relationship 

between the considered properties. 

 

2.8.5 The Free-Wilson Approach 

This method makes use of the overall effect of 

substituents to biological activities in constructing 

QSAR model. Unlike other approaches we have seen 

that calculate various physicochemical properties, this 

approach only requires experimental measurements of 

biological activity [45].  Biological activity of a parent 

structure is measured then compared with the activities 

of a range of substituted analogues. An equation (24) 

is then derived which relates biological activity to the 

presence, or otherwise, of particular substituents (X1-

Xn). 

 
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑘1𝑋1 +  𝑘2𝑋2 +  𝑘3𝑋3 + ⋯ +  𝑘𝑛𝑋𝑛 + 𝑍   −  − −  −   (24) 

 

Where 𝑋𝑛 is an indicator variable and has the value of 

1 when the substituent “n” is present and the value of 

zero (0) when “n” is absent. 𝐾𝑛 values represent the 

contribution that each substituent makes to the 

activity. The average activity of the studied structures 

is given by the constant Z. 

Free-Wilson approach is useful in quantifying specific 

molecular features which cannot be tabulated or the 

effect of unusual substituents that are not listed in the 

tables. In addition, the method can work in tandem 

with Hansch equations in developing an effective 

QSAR model as exemplified in developing QSAR 

equation for anti-allergic activity of a series of 

pyranenamines. 

Three disadvantages have been identified in Free-

Wilson method which are; this approach requires large 

number of analogues to be synthesized and tested in 

order to derive a meaningful equation. Also, the 

difficulty in rationalizing the results and explaining the 

reason a substituent’s position favours or disfavours 

activity. Another limitation is, the effects of different 

substituents may not be additive due to the occurrence 

of intramolecular interactions affecting activity. 

The ability to predict a biological activity is valuable 

in any number of industries. Whilst some QSARs 

appear to be little more than academic studies, there 

are a large number of applications of these models 

within industry, academia and governmental 

(regulatory) agencies. A small number of potential 

uses are listed below: 

• The rational identification of new leads with 

pharmacological, biocidal or pesticidal activity. 

• The optimization of pharmacological, biocidal or 

pesticidal activity. 

• The rational design of numerous other products such 

as surface-active agents, perfumes, dyes, and fine 

chemicals. 

• The identification of hazardous compounds at early 

stages of product development or the screening of 

inventories of existing compounds. 

• The designing out of toxicity and side-effects in new 

compounds. 

• The prediction of toxicity to humans through 

deliberate, occasional and occupational exposure. 

• The prediction of toxicity to environmental species. 

• The selection of compounds with optimal 

pharmacokinetic properties, whether it be stability or 

availability in biological systems. 

• The prediction of a variety of physico-chemical 

properties of molecules (whether they be 

pharmaceuticals, pesticides, personal products, fine 

chemicals, etc.). 

• The prediction of the fate of molecules which are 

released into the environment. 

• The rationalization and prediction of the combined 

effects of molecules, whether it be in mixtures or 

formulations. 

The key feature of the role of in silico technologies in 

all of the listed areas of applications is that; predictions 

can be made from molecular structure alone. 

 

2.9 Pharmacokinetic Profile of Drugs 

It has become imperative to determine the absorption, 

distribution, metabolism and elimination properties, or 

better still ADMET, ADME/T or ADME/Tox (when 

considerations are given to toxicity issues) of potential 

drug molecules ab initio of drug design because many 

drugs fail to enter the market as a result of poor 

pharmacokinetic profile. In silico approaches are 

employed in the evaluation of these properties due to 

their cost and time effectiveness relative to 

experimental methods [46]. 

The well-known Lipinski’s Rule of Five was proposed 

to assess the oral bioavailability of a compound. It 

defines cutoffs for molecular mass, lipophilicity, 

number of hydrogen bond donors and acceptors which 

captures 90% of oral drugs and clinical candidates. 

Despite the fact that Rule of Five is often used as a 

filter, a number of drug compounds violate one or 

more criteria, therefore this should be kept as a 

guideline for bioavailability estimation. As mentioned 

in the Lipinski’s Rule of Five, the importance of 

lipophilicity and molecular size is widely accepted. 

Leeson and Springthorpe observed that high 

instability, as well as other ADMET liabilities 
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including low solubility, high plasma protein binding 

(PPB), and high hERG (human ether-ago-go-related 

potassium channel protein) inhibition, can be caused 

by high lipophilicity. Low solubility and high PPB 

leads to low free plasma concentration of the 

compounds, which is critical to getting the desired 

pharmacology effect. HERG is a voltage-gated 

potassium ion channel, and high inhibition of this 

protein can cause QT prolongation which may result 

in fatal cardiac arrhythmia. Analysis of several simple 

physicochemical properties showed that drugs have 

significantly lower lipophilicity and molecular sizes 

than general bioactive compounds, compounds which 

have effects on living systems, and clinical candidates 

[47]. 

African trypanosomiasis is a parasitic disease that 

poses a significant health challenge to both humans 

and animals. Chemotherapy for the disease is poor. 

Except for fexinidazole, which is still in phase II/III 

clinical study in patients with late-stage of the disease, 

the only four drugs (suramin, melarsoprol, 

pentamidine and eflornithine) currently used to treat 

trypanosmiasis were developed about 30 years ago. 

Besides, each of these drugs has one or more of these 

challenges: expensive, highly toxic and require 

parenteral administration. Therefore, there is an urgent 

need for new and improved drugs against 

trypanosomal infection. Natural products from 

African rich vegetation with promising 

antitrypanosomal potencies have not resulted to 

drugs/drug leads because of high cost and time 

demand in drug development. Nowadays, these two 

limitations are greatly minimized by the use of 

computational techniques. 

  

2.10 Successes of Computer-Aided-Drug-Design 

SBDD has played vital role in drug design and 

development as shown in the following examples [48-

49]: 

1. Inhibitors of Hsp90. Hsp90 is considered an 

essential therapeutic target for oncology because 

as a molecular chaperone, it modulates the 

activity of multiple oncogenic processes. 700,000 

compounds from rCat were docked towards 

Hsp90 to identify potential hits (Hsp90 

inhibitors). 900 nonredundant hits were identified 

from the virtual screening effort and 719 of the 

900 compounds were purchased and tested in vivo 

which yielded 13 and 7 compounds with IC50< 

100 µM and < 10 µM respectively. A study of hit-

protein complex identified resorcinol-pyrazole 

series of compounds as lead and upon structural 

optimization of the lead arrived at compound 

AUY922 which then was investigated for 

myeloma, breast, lung and gastric cancers. 

 

2. Discovery of M1 Acetylcholine Receptor 

Agonists. Selective agonist of M1 mAChR is used 

to treat dementia such as Alzheimer’s disease and 

cognitive impairment associated with 

schizophrenia. Budzik et al. [48] virtually 

screened a collection of corporate compounds 

against this target to arrive at 1000 putative hits. 

Following in vitro assay, optimization for 

improving potency and selectivity for M1 

mAChR, a series of novel 1-(N-substituted 

piperidin-4-yl) benzimidazolones were developed 

which have shown potency (as M1 mAChR 

agonist), ability to permeate the CNS and are 

drug-like. 

 

3 Conclusion 

The use of computers and molecular modeling 

strategies has become integral part of modern drug 

design and development techniques. This is majorly 

because of the time and cost effectiveness of the 

method. Also, the increasing agreement existing 

between computational and experimental results 

validates this research technique. However, 

continuous research is still ongoing to improve 

accuracy and speed of current software and algorithms 

used in computation. 
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